Clover icon

Coverage Report

  1. Project Clover database Wed Nov 13 2024 16:12:26 GMT
  2. Package jalview.analysis

File NJTree.java

 

Coverage histogram

../../img/srcFileCovDistChart0.png
59% of files have more coverage

Code metrics

18
26
4
1
136
74
15
0.58
6.5
4
3.75

Classes

Class Line # Actions
NJTree 32 26 15
0.00%
 

Contributing tests

No tests hitting this source file were found.

Source view

1    /*
2    * Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$)
3    * Copyright (C) $$Year-Rel$$ The Jalview Authors
4    *
5    * This file is part of Jalview.
6    *
7    * Jalview is free software: you can redistribute it and/or
8    * modify it under the terms of the GNU General Public License
9    * as published by the Free Software Foundation, either version 3
10    * of the License, or (at your option) any later version.
11    *
12    * Jalview is distributed in the hope that it will be useful, but
13    * WITHOUT ANY WARRANTY; without even the implied warranty
14    * of MERCHANTABILITY or FITNESS FOR A PARTICULAR
15    * PURPOSE. See the GNU General Public License for more details.
16    *
17    * You should have received a copy of the GNU General Public License
18    * along with Jalview. If not, see <http://www.gnu.org/licenses/>.
19    * The Jalview Authors are detailed in the 'AUTHORS' file.
20    */
21    package jalview.analysis;
22   
23    import jalview.api.analysis.ScoreModelI;
24    import jalview.api.analysis.SimilarityParamsI;
25    import jalview.datamodel.BinaryNode;
26    import jalview.viewmodel.AlignmentViewport;
27   
28    /**
29    * This class implements distance calculations used in constructing a Neighbour
30    * Joining tree
31    */
 
32    public class NJTree extends TreeBuilder
33    {
34    /**
35    * Constructor given a viewport, tree type and score model
36    *
37    * @param av
38    * the current alignment viewport
39    * @param sm
40    * a distance or similarity score model to use to compute the tree
41    * @param scoreParameters
42    */
 
43  0 toggle public NJTree(AlignmentViewport av, ScoreModelI sm,
44    SimilarityParamsI scoreParameters)
45    {
46  0 super(av, sm, scoreParameters);
47    }
48   
49    /**
50    * {@inheritDoc}
51    */
 
52  0 toggle @Override
53    protected double findMinDistance()
54    {
55  0 double min = Double.MAX_VALUE;
56   
57  0 for (int i = 0; i < (noseqs - 1); i++)
58    {
59  0 for (int j = i + 1; j < noseqs; j++)
60    {
61  0 if (!done.get(i) && !done.get(j))
62    {
63  0 double tmp = distances.getValue(i, j)
64    - (findr(i, j) + findr(j, i));
65   
66  0 if (tmp < min)
67    {
68  0 mini = i;
69  0 minj = j;
70   
71  0 min = tmp;
72    }
73    }
74    }
75    }
76   
77  0 return min;
78    }
79   
80    /**
81    * {@inheritDoc}
82    */
 
83  0 toggle @Override
84    protected void findNewDistances(BinaryNode nodei, BinaryNode nodej,
85    double dist)
86    {
87  0 nodei.dist = ((dist + ri) - rj) / 2;
88  0 nodej.dist = (dist - nodei.dist);
89   
90  0 if (nodei.dist < 0)
91    {
92  0 nodei.dist = 0;
93    }
94   
95  0 if (nodej.dist < 0)
96    {
97  0 nodej.dist = 0;
98    }
99    }
100   
101    /**
102    * Calculates and saves the distance between the combination of cluster(i) and
103    * cluster(j) and all other clusters. The new distance to cluster k is
104    * calculated as the average of the distances from i to k and from j to k,
105    * less half the distance from i to j.
106    *
107    * @param i
108    * @param j
109    */
 
110  0 toggle @Override
111    protected void findClusterDistance(int i, int j)
112    {
113    // New distances from cluster i to others
114  0 double[] newdist = new double[noseqs];
115   
116  0 double ijDistance = distances.getValue(i, j);
117  0 for (int l = 0; l < noseqs; l++)
118    {
119  0 if ((l != i) && (l != j))
120    {
121  0 newdist[l] = (distances.getValue(i, l) + distances.getValue(j, l)
122    - ijDistance) / 2;
123    }
124    else
125    {
126  0 newdist[l] = 0;
127    }
128    }
129   
130  0 for (int ii = 0; ii < noseqs; ii++)
131    {
132  0 distances.setValue(i, ii, newdist[ii]);
133  0 distances.setValue(ii, i, newdist[ii]);
134    }
135    }
136    }