Class |
Line # |
Actions |
|||
---|---|---|---|---|---|
RotatableMatrix | 32 | 64 | 22 | ||
RotatableMatrix.Axis | 58 | 0 | 0 |
1 | /* | |
2 | * Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$) | |
3 | * Copyright (C) $$Year-Rel$$ The Jalview Authors | |
4 | * | |
5 | * This file is part of Jalview. | |
6 | * | |
7 | * Jalview is free software: you can redistribute it and/or | |
8 | * modify it under the terms of the GNU General Public License | |
9 | * as published by the Free Software Foundation, either version 3 | |
10 | * of the License, or (at your option) any later version. | |
11 | * | |
12 | * Jalview is distributed in the hope that it will be useful, but | |
13 | * WITHOUT ANY WARRANTY; without even the implied warranty | |
14 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR | |
15 | * PURPOSE. See the GNU General Public License for more details. | |
16 | * | |
17 | * You should have received a copy of the GNU General Public License | |
18 | * along with Jalview. If not, see <http://www.gnu.org/licenses/>. | |
19 | * The Jalview Authors are detailed in the 'AUTHORS' file. | |
20 | */ | |
21 | package jalview.math; | |
22 | ||
23 | import jalview.datamodel.Point; | |
24 | ||
25 | import java.io.PrintStream; | |
26 | import java.util.HashMap; | |
27 | import java.util.Map; | |
28 | ||
29 | /** | |
30 | * Model for a 3x3 matrix which provides methods for rotation in 3-D space | |
31 | */ | |
32 | public class RotatableMatrix | |
33 | { | |
34 | private static final int DIMS = 3; | |
35 | ||
36 | /* | |
37 | * cache the most used rotations: +/- 1, 2, 3, 4 degrees around x or y axis | |
38 | */ | |
39 | private static Map<Axis, Map<Float, float[][]>> cachedRotations; | |
40 | ||
41 | 1 | static |
42 | { | |
43 | 1 | cachedRotations = new HashMap<>(); |
44 | 1 | for (Axis axis : Axis.values()) |
45 | { | |
46 | 3 | HashMap<Float, float[][]> map = new HashMap<>(); |
47 | 3 | cachedRotations.put(axis, map); |
48 | 15 | for (int deg = 1; deg < 5; deg++) |
49 | { | |
50 | 12 | float[][] rotation = getRotation(deg, axis); |
51 | 12 | map.put(Float.valueOf(deg), rotation); |
52 | 12 | rotation = getRotation(-deg, axis); |
53 | 12 | map.put(Float.valueOf(-deg), rotation); |
54 | } | |
55 | } | |
56 | } | |
57 | ||
58 | public enum Axis | |
59 | { | |
60 | X, Y, Z | |
61 | } | |
62 | ||
63 | float[][] matrix; | |
64 | ||
65 | /** | |
66 | * Constructor creates a new identity matrix (all values zero except for 1 on | |
67 | * the diagonal) | |
68 | */ | |
69 | 4 | public RotatableMatrix() |
70 | { | |
71 | 4 | matrix = new float[DIMS][DIMS]; |
72 | 16 | for (int j = 0; j < DIMS; j++) |
73 | { | |
74 | 12 | matrix[j][j] = 1f; |
75 | } | |
76 | } | |
77 | ||
78 | /** | |
79 | * Sets the value at position (i, j) of the matrix | |
80 | * | |
81 | * @param i | |
82 | * @param j | |
83 | * @param value | |
84 | */ | |
85 | 36 | public void setValue(int i, int j, float value) |
86 | { | |
87 | 36 | matrix[i][j] = value; |
88 | } | |
89 | ||
90 | /** | |
91 | * Answers the value at position (i, j) of the matrix | |
92 | * | |
93 | * @param i | |
94 | * @param j | |
95 | * @return | |
96 | */ | |
97 | 9 | public float getValue(int i, int j) |
98 | { | |
99 | 9 | return matrix[i][j]; |
100 | } | |
101 | ||
102 | /** | |
103 | * Prints the matrix in rows of space-delimited values | |
104 | */ | |
105 | 1 | public void print(PrintStream ps) |
106 | { | |
107 | 1 | ps.println(matrix[0][0] + " " + matrix[0][1] + " " + matrix[0][2]); |
108 | 1 | ps.println(matrix[1][0] + " " + matrix[1][1] + " " + matrix[1][2]); |
109 | 1 | ps.println(matrix[2][0] + " " + matrix[2][1] + " " + matrix[2][2]); |
110 | } | |
111 | ||
112 | /** | |
113 | * Rotates the matrix through the specified number of degrees around the | |
114 | * specified axis | |
115 | * | |
116 | * @param degrees | |
117 | * @param axis | |
118 | */ | |
119 | 0 | public void rotate(float degrees, Axis axis) |
120 | { | |
121 | 0 | float[][] rot = getRotation(degrees, axis); |
122 | ||
123 | 0 | preMultiply(rot); |
124 | } | |
125 | ||
126 | /** | |
127 | * Answers a matrix which, when it pre-multiplies another matrix, applies a | |
128 | * rotation of the specified number of degrees around the specified axis | |
129 | * | |
130 | * @param degrees | |
131 | * @param axis | |
132 | * @return | |
133 | * @see https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations | |
134 | */ | |
135 | 27 | protected static float[][] getRotation(float degrees, Axis axis) |
136 | { | |
137 | 27 | Float floatValue = Float.valueOf(degrees); |
138 | 27 | if (cachedRotations.get(axis).containsKey(floatValue)) |
139 | { | |
140 | // jalview.bin.Console.outPrintln("getRotation from cache: " + (int) | |
141 | // degrees); | |
142 | 0 | return cachedRotations.get(axis).get(floatValue); |
143 | } | |
144 | ||
145 | 27 | float costheta = (float) Math.cos(degrees * Math.PI / 180f); |
146 | ||
147 | 27 | float sintheta = (float) Math.sin(degrees * Math.PI / 180f); |
148 | ||
149 | 27 | float[][] rot = new float[DIMS][DIMS]; |
150 | ||
151 | 27 | switch (axis) |
152 | { | |
153 | 9 | case X: |
154 | 9 | rot[0][0] = 1f; |
155 | 9 | rot[1][1] = costheta; |
156 | 9 | rot[1][2] = sintheta; |
157 | 9 | rot[2][1] = -sintheta; |
158 | 9 | rot[2][2] = costheta; |
159 | 9 | break; |
160 | 9 | case Y: |
161 | 9 | rot[0][0] = costheta; |
162 | 9 | rot[0][2] = -sintheta; |
163 | 9 | rot[1][1] = 1f; |
164 | 9 | rot[2][0] = sintheta; |
165 | 9 | rot[2][2] = costheta; |
166 | 9 | break; |
167 | 9 | case Z: |
168 | 9 | rot[0][0] = costheta; |
169 | 9 | rot[0][1] = -sintheta; |
170 | 9 | rot[1][0] = sintheta; |
171 | 9 | rot[1][1] = costheta; |
172 | 9 | rot[2][2] = 1f; |
173 | 9 | break; |
174 | } | |
175 | 27 | return rot; |
176 | } | |
177 | ||
178 | /** | |
179 | * Answers a new array of float values which is the result of pre-multiplying | |
180 | * this matrix by the given vector. Each value of the result is the dot | |
181 | * product of the vector with one column of this matrix. The matrix and input | |
182 | * vector are not modified. | |
183 | * | |
184 | * @param vect | |
185 | * | |
186 | * @return | |
187 | */ | |
188 | 1 | public float[] vectorMultiply(float[] vect) |
189 | { | |
190 | 1 | float[] result = new float[DIMS]; |
191 | ||
192 | 4 | for (int i = 0; i < DIMS; i++) |
193 | { | |
194 | 3 | result[i] = (matrix[i][0] * vect[0]) + (matrix[i][1] * vect[1]) |
195 | + (matrix[i][2] * vect[2]); | |
196 | } | |
197 | ||
198 | 1 | return result; |
199 | } | |
200 | ||
201 | /** | |
202 | * Performs pre-multiplication of this matrix by the given one. Value (i, j) | |
203 | * of the result is the dot product of the i'th row of <code>mat</code> with | |
204 | * the j'th column of this matrix. | |
205 | * | |
206 | * @param mat | |
207 | */ | |
208 | 1 | public void preMultiply(float[][] mat) |
209 | { | |
210 | 1 | float[][] tmp = new float[DIMS][DIMS]; |
211 | ||
212 | 4 | for (int i = 0; i < DIMS; i++) |
213 | { | |
214 | 12 | for (int j = 0; j < DIMS; j++) |
215 | { | |
216 | 9 | tmp[i][j] = (mat[i][0] * matrix[0][j]) + (mat[i][1] * matrix[1][j]) |
217 | + (mat[i][2] * matrix[2][j]); | |
218 | } | |
219 | } | |
220 | ||
221 | 1 | matrix = tmp; |
222 | } | |
223 | ||
224 | /** | |
225 | * Performs post-multiplication of this matrix by the given one. Value (i, j) | |
226 | * of the result is the dot product of the i'th row of this matrix with the | |
227 | * j'th column of <code>mat</code>. | |
228 | * | |
229 | * @param mat | |
230 | */ | |
231 | 0 | public void postMultiply(float[][] mat) |
232 | { | |
233 | 0 | float[][] tmp = new float[DIMS][DIMS]; |
234 | ||
235 | 0 | for (int i = 0; i < DIMS; i++) |
236 | { | |
237 | 0 | for (int j = 0; j < DIMS; j++) |
238 | { | |
239 | 0 | tmp[i][j] = (matrix[i][0] * mat[0][j]) + (matrix[i][1] * mat[1][j]) |
240 | + (matrix[i][2] * mat[2][j]); | |
241 | } | |
242 | } | |
243 | ||
244 | 0 | matrix = tmp; |
245 | } | |
246 | ||
247 | /** | |
248 | * Performs a vector multiplication whose result is the Point representing the | |
249 | * input point's value vector post-multiplied by this matrix. | |
250 | * | |
251 | * @param coord | |
252 | * @return | |
253 | */ | |
254 | 0 | public Point vectorMultiply(Point coord) |
255 | { | |
256 | 0 | float[] v = vectorMultiply(new float[] { coord.x, coord.y, coord.z }); |
257 | 0 | return new Point(v[0], v[1], v[2]); |
258 | } | |
259 | } |