Clover icon

Coverage Report

  1. Project Clover database Fri Dec 6 2024 13:47:14 GMT
  2. Package jalview.analysis

File Grouping.java

 

Coverage histogram

../../img/srcFileCovDistChart10.png
0% of files have more coverage

Code metrics

22
63
3
1
294
131
14
0.22
21
3
4.67

Classes

Class Line # Actions
Grouping 40 63 14
0.9204545692%
 

Contributing tests

This file is covered by 1 test. .

Source view

1    /*
2    * Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$)
3    * Copyright (C) $$Year-Rel$$ The Jalview Authors
4    *
5    * This file is part of Jalview.
6    *
7    * Jalview is free software: you can redistribute it and/or
8    * modify it under the terms of the GNU General Public License
9    * as published by the Free Software Foundation, either version 3
10    * of the License, or (at your option) any later version.
11    *
12    * Jalview is distributed in the hope that it will be useful, but
13    * WITHOUT ANY WARRANTY; without even the implied warranty
14    * of MERCHANTABILITY or FITNESS FOR A PARTICULAR
15    * PURPOSE. See the GNU General Public License for more details.
16    *
17    * You should have received a copy of the GNU General Public License
18    * along with Jalview. If not, see <http://www.gnu.org/licenses/>.
19    * The Jalview Authors are detailed in the 'AUTHORS' file.
20    */
21    package jalview.analysis;
22   
23    import jalview.datamodel.ColumnSelection;
24    import jalview.datamodel.SequenceGroup;
25    import jalview.datamodel.SequenceI;
26   
27    import java.util.ArrayList;
28    import java.util.HashMap;
29    import java.util.List;
30    import java.util.Map;
31    import java.util.Vector;
32   
33    /**
34    * various methods for defining groups on an alignment based on some other
35    * properties
36    *
37    * @author JimP
38    *
39    */
 
40    public class Grouping
41    {
42    /**
43    * Divide the given sequences based on the equivalence of their corresponding
44    * selectedChars string. If exgroups is provided, existing groups will be
45    * subdivided.
46    *
47    * @param sequences
48    * @param selectedChars
49    * @param list
50    * @return
51    */
 
52  1 toggle public static SequenceGroup[] makeGroupsFrom(SequenceI[] sequences,
53    String[] selectedChars, List<SequenceGroup> list)
54    {
55    // TODO: determine how to get/recover input data for group generation
56  1 Map<String, List<SequenceI>> gps = new HashMap<String, List<SequenceI>>();
57  1 int width = 0, i;
58  1 Map<String, SequenceGroup> pgroup = new HashMap<String, SequenceGroup>();
59  1 if (list != null)
60    {
61  1 for (SequenceGroup sg : list)
62    {
63  2 for (SequenceI sq : sg.getSequences(null))
64    {
65  5 pgroup.put(sq.toString(), sg);
66    }
67    }
68    }
69  6 for (i = 0; i < sequences.length; i++)
70    {
71  5 String schar = selectedChars[i];
72  5 SequenceGroup pgp = pgroup.get(((Object) sequences[i]).toString());
73  5 if (pgp != null)
74    {
75  5 schar = pgp.getName() + ":" + schar;
76    }
77  5 List<SequenceI> svec = gps.get(schar);
78  5 if (svec == null)
79    {
80  4 svec = new ArrayList<SequenceI>();
81  4 gps.put(schar, svec);
82    }
83  5 if (width < sequences[i].getLength())
84    {
85  1 width = sequences[i].getLength();
86    }
87  5 svec.add(sequences[i]);
88    }
89    // make some groups
90  1 SequenceGroup[] groups = new SequenceGroup[gps.size()];
91  1 i = 0;
92  1 for (String key : gps.keySet())
93    {
94  4 SequenceGroup group = new SequenceGroup(gps.get(key),
95    "Subseq: " + key, null, true, true, false, 0, width - 1);
96   
97  4 groups[i++] = group;
98    }
99  1 gps.clear();
100  1 pgroup.clear();
101  1 return groups;
102    }
103   
104    /**
105    * Divide the given sequences based on the equivalence of characters at
106    * selected columns If exgroups is provided, existing groups will be
107    * subdivided.
108    *
109    * @param sequences
110    * @param columnSelection
111    * @param list
112    * @return
113    */
 
114  1 toggle public static SequenceGroup[] makeGroupsFromCols(SequenceI[] sequences,
115    ColumnSelection cs, List<SequenceGroup> list)
116    {
117    // TODO: determine how to get/recover input data for group generation
118  1 Map<String, List<SequenceI>> gps = new HashMap<String, List<SequenceI>>();
119  1 Map<String, SequenceGroup> pgroup = new HashMap<String, SequenceGroup>();
120  1 if (list != null)
121    {
122  1 for (SequenceGroup sg : list)
123    {
124  2 for (SequenceI sq : sg.getSequences(null))
125    {
126  5 pgroup.put(sq.toString(), sg);
127    }
128    }
129    }
130   
131    /*
132    * get selected columns (in the order they were selected);
133    * note this could include right-to-left ranges
134    */
135  1 int[] spos = new int[cs.getSelected().size()];
136  1 int width = -1;
137  1 int i = 0;
138  1 for (Integer pos : cs.getSelected())
139    {
140  3 spos[i++] = pos.intValue();
141    }
142   
143  6 for (i = 0; i < sequences.length; i++)
144    {
145  5 int slen = sequences[i].getLength();
146  5 if (width < slen)
147    {
148  1 width = slen;
149    }
150   
151  5 SequenceGroup pgp = pgroup.get(((Object) sequences[i]).toString());
152  5 StringBuilder schar = new StringBuilder();
153  5 if (pgp != null)
154    {
155  5 schar.append(pgp.getName() + ":");
156    }
157  5 for (int p : spos)
158    {
159  15 if (p >= slen)
160    {
161  0 schar.append("~");
162    }
163    else
164    {
165  15 schar.append(sequences[i].getCharAt(p));
166    }
167    }
168  5 List<SequenceI> svec = gps.get(schar.toString());
169  5 if (svec == null)
170    {
171  4 svec = new ArrayList<SequenceI>();
172  4 gps.put(schar.toString(), svec);
173    }
174  5 svec.add(sequences[i]);
175    }
176    // make some groups
177  1 SequenceGroup[] groups = new SequenceGroup[gps.size()];
178  1 i = 0;
179  1 for (String key : gps.keySet())
180    {
181  4 SequenceGroup group = new SequenceGroup(gps.get(key),
182    "Subseq: " + key, null, true, true, false, 0, width - 1);
183   
184  4 groups[i++] = group;
185    }
186  1 gps.clear();
187  1 pgroup.clear();
188  1 return groups;
189    }
190   
191    /**
192    * subdivide the given sequences based on the distribution of features
193    *
194    * @param featureLabels
195    * - null or one or more feature types to filter on.
196    * @param groupLabels
197    * - null or set of groups to filter features on
198    * @param start
199    * - range for feature filter
200    * @param stop
201    * - range for feature filter
202    * @param sequences
203    * - sequences to be divided
204    * @param exgroups
205    * - existing groups to be subdivided
206    * @param method
207    * - density, description, score
208    */
 
209  0 toggle public static void divideByFeature(String[] featureLabels,
210    String[] groupLabels, int start, int stop, SequenceI[] sequences,
211    Vector exgroups, String method)
212    {
213    // TODO implement divideByFeature
214    /*
215    * if (method!=AlignmentSorter.FEATURE_SCORE &&
216    * method!=AlignmentSorter.FEATURE_LABEL &&
217    * method!=AlignmentSorter.FEATURE_DENSITY) { throw newError(
218    * "Implementation Error - sortByFeature method must be one of FEATURE_SCORE, FEATURE_LABEL or FEATURE_DENSITY."
219    * ); } boolean ignoreScore=method!=AlignmentSorter.FEATURE_SCORE;
220    * StringBuffer scoreLabel = new StringBuffer();
221    * scoreLabel.append(start+stop+method); // This doesn't work yet - we'd
222    * like to have a canonical ordering that can be preserved from call to call
223    * for (int i=0;featureLabels!=null && i<featureLabels.length; i++) {
224    * scoreLabel.append(featureLabels[i]==null ? "null" : featureLabels[i]); }
225    * for (int i=0;groupLabels!=null && i<groupLabels.length; i++) {
226    * scoreLabel.append(groupLabels[i]==null ? "null" : groupLabels[i]); }
227    * SequenceI[] seqs = alignment.getSequencesArray();
228    *
229    * boolean[] hasScore = new boolean[seqs.length]; // per sequence score //
230    * presence int hasScores = 0; // number of scores present on set double[]
231    * scores = new double[seqs.length]; int[] seqScores = new int[seqs.length];
232    * Object[] feats = new Object[seqs.length]; double min = 0, max = 0; for
233    * (int i = 0; i < seqs.length; i++) { SequenceFeature[] sf =
234    * seqs[i].getSequenceFeatures(); if (sf==null &&
235    * seqs[i].getDatasetSequence()!=null) { sf =
236    * seqs[i].getDatasetSequence().getSequenceFeatures(); } if (sf==null) { sf
237    * = new SequenceFeature[0]; } else { SequenceFeature[] tmp = new
238    * SequenceFeature[sf.length]; for (int s=0; s<tmp.length;s++) { tmp[s] =
239    * sf[s]; } sf = tmp; } int sstart = (start==-1) ? start :
240    * seqs[i].findPosition(start); int sstop = (stop==-1) ? stop :
241    * seqs[i].findPosition(stop); seqScores[i]=0; scores[i]=0.0; int
242    * n=sf.length; for (int f=0;f<sf.length;f++) { // filter for selection
243    * criteria if ( // ignore features outwith alignment start-stop positions.
244    * (sf[f].end < sstart || sf[f].begin > sstop) || // or ignore based on
245    * selection criteria (featureLabels != null &&
246    * !AlignmentSorter.containsIgnoreCase(sf[f].type, featureLabels)) ||
247    * (groupLabels != null // problem here: we cannot eliminate null feature
248    * group features && (sf[f].getFeatureGroup() != null &&
249    * !AlignmentSorter.containsIgnoreCase(sf[f].getFeatureGroup(),
250    * groupLabels)))) { // forget about this feature sf[f] = null; n--; } else
251    * { // or, also take a look at the scores if necessary. if (!ignoreScore &&
252    * sf[f].getScore()!=Float.NaN) { if (seqScores[i]==0) { hasScores++; }
253    * seqScores[i]++; hasScore[i] = true; scores[i] += sf[f].getScore(); //
254    * take the first instance of this // score. } } } SequenceFeature[] fs;
255    * feats[i] = fs = new SequenceFeature[n]; if (n>0) { n=0; for (int
256    * f=0;f<sf.length;f++) { if (sf[f]!=null) { ((SequenceFeature[])
257    * feats[i])[n++] = sf[f]; } } if (method==FEATURE_LABEL) { // order the
258    * labels by alphabet String[] labs = new String[fs.length]; for (int
259    * l=0;l<labs.length; l++) { labs[l] = (fs[l].getDescription()!=null ?
260    * fs[l].getDescription() : fs[l].getType()); }
261    * jalview.util.QuickSort.sort(labs, ((Object[]) feats[i])); } } if
262    * (hasScore[i]) { // compute average score scores[i]/=seqScores[i]; //
263    * update the score bounds. if (hasScores == 1) { max = min = scores[i]; }
264    * else { if (max < scores[i]) { max = scores[i]; } if (min > scores[i]) {
265    * min = scores[i]; } } } }
266    *
267    * if (method==FEATURE_SCORE) { if (hasScores == 0) { return; // do nothing
268    * - no scores present to sort by. } // pad score matrix if (hasScores <
269    * seqs.length) { for (int i = 0; i < seqs.length; i++) { if (!hasScore[i])
270    * { scores[i] = (max + i); } else { int nf=(feats[i]==null) ? 0
271    * :((SequenceFeature[]) feats[i]).length;
272    * jalview.bin.Console.errPrintln("Sorting on Score: seq "+seqs[i].getName()+
273    * " Feats: "+nf+" Score : "+scores[i]); } } }
274    *
275    * jalview.util.QuickSort.sort(scores, seqs); } else if
276    * (method==FEATURE_DENSITY) {
277    *
278    * // break ties between equivalent numbers for adjacent sequences by adding
279    * 1/Nseq*i on the original order double fr = 0.9/(1.0*seqs.length); for
280    * (int i=0;i<seqs.length; i++) { double nf; scores[i] =
281    * (0.05+fr*i)+(nf=((feats[i]==null) ? 0.0 :1.0*((SequenceFeature[])
282    * feats[i]).length));
283    * jalview.bin.Console.errPrintln("Sorting on Density: seq "+seqs[i].getName()+
284    * " Feats: "+nf+" Score : "+scores[i]); }
285    * jalview.util.QuickSort.sort(scores, seqs); } else { if
286    * (method==FEATURE_LABEL) { throw new Error("Not yet implemented."); } } if
287    * (lastSortByFeatureScore ==null ||
288    * scoreLabel.equals(lastSortByFeatureScore)) { setOrder(alignment, seqs); }
289    * else { setReverseOrder(alignment, seqs); } lastSortByFeatureScore =
290    * scoreLabel.toString();
291    */
292    }
293   
294    }