| Class | Line # | Actions | |||
|---|---|---|---|---|---|
| MatrixI | 29 | 0 | 0 |
| 1 | /* | |
| 2 | * Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$) | |
| 3 | * Copyright (C) $$Year-Rel$$ The Jalview Authors | |
| 4 | * | |
| 5 | * This file is part of Jalview. | |
| 6 | * | |
| 7 | * Jalview is free software: you can redistribute it and/or | |
| 8 | * modify it under the terms of the GNU General Public License | |
| 9 | * as published by the Free Software Foundation, either version 3 | |
| 10 | * of the License, or (at your option) any later version. | |
| 11 | * | |
| 12 | * Jalview is distributed in the hope that it will be useful, but | |
| 13 | * WITHOUT ANY WARRANTY; without even the implied warranty | |
| 14 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR | |
| 15 | * PURPOSE. See the GNU General Public License for more details. | |
| 16 | * | |
| 17 | * You should have received a copy of the GNU General Public License | |
| 18 | * along with Jalview. If not, see <http://www.gnu.org/licenses/>. | |
| 19 | * The Jalview Authors are detailed in the 'AUTHORS' file. | |
| 20 | */ | |
| 21 | package jalview.math; | |
| 22 | ||
| 23 | import java.io.PrintStream; | |
| 24 | ||
| 25 | /** | |
| 26 | * An interface that describes a rectangular matrix of double values and | |
| 27 | * operations on it | |
| 28 | */ | |
| 29 | public interface MatrixI | |
| 30 | { | |
| 31 | /** | |
| 32 | * Answers the number of columns | |
| 33 | * | |
| 34 | * @return | |
| 35 | */ | |
| 36 | int width(); | |
| 37 | ||
| 38 | /** | |
| 39 | * Answers the number of rows | |
| 40 | * | |
| 41 | * @return | |
| 42 | */ | |
| 43 | int height(); | |
| 44 | ||
| 45 | /** | |
| 46 | * Answers the value at row i, column j | |
| 47 | * | |
| 48 | * @param i | |
| 49 | * @param j | |
| 50 | * @return | |
| 51 | */ | |
| 52 | double getValue(int i, int j); | |
| 53 | ||
| 54 | /** | |
| 55 | * Sets the value at row i, colum j | |
| 56 | * | |
| 57 | * @param i | |
| 58 | * @param j | |
| 59 | * @param d | |
| 60 | */ | |
| 61 | void setValue(int i, int j, double d); | |
| 62 | ||
| 63 | /** | |
| 64 | * Returns the matrix as a double[][] array | |
| 65 | * | |
| 66 | * @return | |
| 67 | */ | |
| 68 | double[][] asArray(); | |
| 69 | ||
| 70 | /** | |
| 71 | * Answers a copy of the values in the i'th row | |
| 72 | * | |
| 73 | * @return | |
| 74 | */ | |
| 75 | double[] getRow(int i); | |
| 76 | ||
| 77 | /** | |
| 78 | * Answers a copy of the values in the i'th column | |
| 79 | * | |
| 80 | * @return | |
| 81 | */ | |
| 82 | double[] getColumn(int i); | |
| 83 | ||
| 84 | /** | |
| 85 | * Answers a new matrix with a copy of the values in this one | |
| 86 | * | |
| 87 | * @return | |
| 88 | */ | |
| 89 | MatrixI copy(); | |
| 90 | ||
| 91 | /** | |
| 92 | * Returns a new matrix which is the transpose of this one | |
| 93 | * | |
| 94 | * @return | |
| 95 | */ | |
| 96 | MatrixI transpose(); | |
| 97 | ||
| 98 | /** | |
| 99 | * Returns a new matrix which is the result of premultiplying this matrix by | |
| 100 | * the supplied argument. If this of size AxB (A rows and B columns), and the | |
| 101 | * argument is CxA (C rows and A columns), the result is of size CxB. | |
| 102 | * | |
| 103 | * @param in | |
| 104 | * | |
| 105 | * @return | |
| 106 | * @throws IllegalArgumentException | |
| 107 | * if the number of columns in the pre-multiplier is not equal to | |
| 108 | * the number of rows in the multiplicand (this) | |
| 109 | */ | |
| 110 | MatrixI preMultiply(MatrixI m); | |
| 111 | ||
| 112 | /** | |
| 113 | * Returns a new matrix which is the result of postmultiplying this matrix by | |
| 114 | * the supplied argument. If this of size AxB (A rows and B columns), and the | |
| 115 | * argument is BxC (B rows and C columns), the result is of size AxC. | |
| 116 | * <p> | |
| 117 | * This method simply returns the result of in.preMultiply(this) | |
| 118 | * | |
| 119 | * @param in | |
| 120 | * | |
| 121 | * @return | |
| 122 | * @throws IllegalArgumentException | |
| 123 | * if the number of rows in the post-multiplier is not equal to the | |
| 124 | * number of columns in the multiplicand (this) | |
| 125 | * @see #preMultiply(Matrix) | |
| 126 | */ | |
| 127 | MatrixI postMultiply(MatrixI m); | |
| 128 | ||
| 129 | double[] getD(); | |
| 130 | ||
| 131 | double[] getE(); | |
| 132 | ||
| 133 | void setD(double[] v); | |
| 134 | ||
| 135 | void setE(double[] v); | |
| 136 | ||
| 137 | void print(PrintStream ps, String format); | |
| 138 | ||
| 139 | void printD(PrintStream ps, String format); | |
| 140 | ||
| 141 | void printE(PrintStream ps, String format); | |
| 142 | ||
| 143 | void tqli() throws Exception; | |
| 144 | ||
| 145 | void tred(); | |
| 146 | ||
| 147 | /** | |
| 148 | * Reverses the range of the matrix values, so that the smallest values become | |
| 149 | * the largest, and the largest become the smallest. This operation supports | |
| 150 | * using a distance measure as a similarity measure, or vice versa. | |
| 151 | * <p> | |
| 152 | * If parameter <code>maxToZero</code> is true, then the maximum value becomes | |
| 153 | * zero, i.e. all values are subtracted from the maximum. This is consistent | |
| 154 | * with converting an identity similarity score to a distance score - the most | |
| 155 | * similar (identity) corresponds to zero distance. However note that the | |
| 156 | * operation is not reversible (unless the original minimum value is zero). | |
| 157 | * For example a range of 10-40 would become 30-0, which would reverse a | |
| 158 | * second time to 0-30. Also note that a general similarity measure (such as | |
| 159 | * BLOSUM) may give different 'identity' scores for different sequences, so | |
| 160 | * they cannot all convert to zero distance. | |
| 161 | * <p> | |
| 162 | * If parameter <code>maxToZero</code> is false, then the values are reflected | |
| 163 | * about the average of {min, max} (effectively swapping min and max). This | |
| 164 | * operation <em>is</em> reversible. | |
| 165 | * | |
| 166 | * @param maxToZero | |
| 167 | */ | |
| 168 | void reverseRange(boolean maxToZero); | |
| 169 | ||
| 170 | /** | |
| 171 | * Multiply all entries by the given value | |
| 172 | * | |
| 173 | * @param d | |
| 174 | */ | |
| 175 | void multiply(double d); | |
| 176 | ||
| 177 | /** | |
| 178 | * Add d to all entries of this matrix | |
| 179 | * | |
| 180 | * @param d | |
| 181 | * ~ value to add | |
| 182 | */ | |
| 183 | void add(double d); | |
| 184 | ||
| 185 | /** | |
| 186 | * Answers true if the two matrices have the same dimensions, and | |
| 187 | * corresponding values all differ by no more than delta (which should be a | |
| 188 | * positive value), else false | |
| 189 | * | |
| 190 | * @param m2 | |
| 191 | * @param delta | |
| 192 | * @return | |
| 193 | */ | |
| 194 | boolean equals(MatrixI m2, double delta); | |
| 195 | ||
| 196 | /** | |
| 197 | * Returns a copy in which every value in the matrix is its absolute | |
| 198 | */ | |
| 199 | MatrixI absolute(); | |
| 200 | ||
| 201 | /** | |
| 202 | * Returns the mean of each row | |
| 203 | */ | |
| 204 | double[] meanRow(); | |
| 205 | ||
| 206 | /** | |
| 207 | * Returns the mean of each column | |
| 208 | */ | |
| 209 | double[] meanCol(); | |
| 210 | ||
| 211 | /** | |
| 212 | * Returns a flattened matrix containing the sum of each column | |
| 213 | * | |
| 214 | * @return | |
| 215 | */ | |
| 216 | double[] sumCol(); | |
| 217 | ||
| 218 | /** | |
| 219 | * returns the mean value of the complete matrix | |
| 220 | */ | |
| 221 | double mean(); | |
| 222 | ||
| 223 | /** | |
| 224 | * fills up a diagonal matrix with its transposed copy !other side should be | |
| 225 | * filled with either 0 or Double.NaN | |
| 226 | */ | |
| 227 | void fillDiagonal(); | |
| 228 | ||
| 229 | /** | |
| 230 | * counts the number of Double.NaN in the matrix | |
| 231 | * | |
| 232 | * @return | |
| 233 | */ | |
| 234 | int countNaN(); | |
| 235 | ||
| 236 | /** | |
| 237 | * performs an element-wise addition of this matrix by another matrix | |
| 238 | * !matrices have to be the same size | |
| 239 | * | |
| 240 | * @param m | |
| 241 | * ~ other matrix | |
| 242 | * | |
| 243 | * @return | |
| 244 | * @throws IllegalArgumentException | |
| 245 | * if this and m do not have the same dimensions | |
| 246 | */ | |
| 247 | MatrixI add(MatrixI m); | |
| 248 | ||
| 249 | /** | |
| 250 | * performs an element-wise subtraction of this matrix by another matrix | |
| 251 | * !matrices have to be the same size | |
| 252 | * | |
| 253 | * @param m | |
| 254 | * ~ other matrix | |
| 255 | * | |
| 256 | * @return | |
| 257 | * @throws IllegalArgumentException | |
| 258 | * if this and m do not have the same dimensions | |
| 259 | */ | |
| 260 | MatrixI subtract(MatrixI m); | |
| 261 | ||
| 262 | /** | |
| 263 | * performs an element-wise multiplication of this matrix by another matrix ~ | |
| 264 | * this * m !matrices have to be the same size | |
| 265 | * | |
| 266 | * @param m | |
| 267 | * ~ other matrix | |
| 268 | * | |
| 269 | * @return | |
| 270 | * @throws IllegalArgumentException | |
| 271 | * if this and m do not have the same dimensions | |
| 272 | */ | |
| 273 | MatrixI elementwiseMultiply(MatrixI m); | |
| 274 | ||
| 275 | /** | |
| 276 | * performs an element-wise division of this matrix by another matrix ~ this / | |
| 277 | * m !matrices have to be the same size | |
| 278 | * | |
| 279 | * @param m | |
| 280 | * ~ other matrix | |
| 281 | * | |
| 282 | * @return | |
| 283 | * @throws IllegalArgumentException | |
| 284 | * if this and m do not have the same dimensions | |
| 285 | */ | |
| 286 | MatrixI elementwiseDivide(MatrixI m); | |
| 287 | ||
| 288 | /** | |
| 289 | * calculates the root-mean-square for two matrices | |
| 290 | * | |
| 291 | * @param m | |
| 292 | * ~ other matrix | |
| 293 | * | |
| 294 | * @return | |
| 295 | */ | |
| 296 | double rmsd(MatrixI m); | |
| 297 | ||
| 298 | /** | |
| 299 | * calculates the Frobenius norm of this matrix | |
| 300 | * | |
| 301 | * @return | |
| 302 | */ | |
| 303 | double norm(); | |
| 304 | ||
| 305 | /** | |
| 306 | * returns the sum of all values in this matrix | |
| 307 | * | |
| 308 | * @return | |
| 309 | */ | |
| 310 | double sum(); | |
| 311 | ||
| 312 | /** | |
| 313 | * returns the sum-product of this matrix with vector v | |
| 314 | * | |
| 315 | * @param v | |
| 316 | * ~ vector | |
| 317 | * | |
| 318 | * @return | |
| 319 | * @throws IllegalArgumentException | |
| 320 | * if this.cols and v do not have the same length | |
| 321 | */ | |
| 322 | double[] sumProduct(double[] v); | |
| 323 | ||
| 324 | /** | |
| 325 | * mirrors the columns of this matrix | |
| 326 | * | |
| 327 | * @return | |
| 328 | */ | |
| 329 | MatrixI mirrorCol(); | |
| 330 | } |