| 1 |
|
|
| 2 |
|
|
| 3 |
|
|
| 4 |
|
|
| 5 |
|
|
| 6 |
|
|
| 7 |
|
|
| 8 |
|
|
| 9 |
|
|
| 10 |
|
|
| 11 |
|
|
| 12 |
|
|
| 13 |
|
|
| 14 |
|
|
| 15 |
|
|
| 16 |
|
|
| 17 |
|
|
| 18 |
|
|
| 19 |
|
|
| 20 |
|
|
| 21 |
|
package jalview.analysis; |
| 22 |
|
|
| 23 |
|
import jalview.api.analysis.ScoreModelI; |
| 24 |
|
import jalview.api.analysis.SimilarityParamsI; |
| 25 |
|
import jalview.datamodel.BinaryNode; |
| 26 |
|
import jalview.viewmodel.AlignmentViewport; |
| 27 |
|
|
| 28 |
|
|
| 29 |
|
|
| 30 |
|
|
| 31 |
|
|
| |
|
| 0% |
Uncovered Elements: 48 (48) |
Complexity: 15 |
Complexity Density: 0.58 |
|
| 32 |
|
public class NJTree extends TreeBuilder |
| 33 |
|
{ |
| 34 |
|
|
| 35 |
|
|
| 36 |
|
|
| 37 |
|
@param |
| 38 |
|
|
| 39 |
|
@param |
| 40 |
|
|
| 41 |
|
@param |
| 42 |
|
|
| |
|
| 0% |
Uncovered Elements: 1 (1) |
Complexity: 1 |
Complexity Density: 1 |
|
| 43 |
0 |
public NJTree(AlignmentViewport av, ScoreModelI sm,... |
| 44 |
|
SimilarityParamsI scoreParameters) |
| 45 |
|
{ |
| 46 |
0 |
super(av, sm, scoreParameters); |
| 47 |
|
} |
| 48 |
|
|
| 49 |
|
|
| 50 |
|
@inheritDoc |
| 51 |
|
|
| |
|
| 0% |
Uncovered Elements: 18 (18) |
Complexity: 6 |
Complexity Density: 0.6 |
|
| 52 |
0 |
@Override... |
| 53 |
|
protected double findMinDistance() |
| 54 |
|
{ |
| 55 |
0 |
double min = Double.MAX_VALUE; |
| 56 |
|
|
| 57 |
0 |
for (int i = 0; i < (noseqs - 1); i++) |
| 58 |
|
{ |
| 59 |
0 |
for (int j = i + 1; j < noseqs; j++) |
| 60 |
|
{ |
| 61 |
0 |
if (!done.get(i) && !done.get(j)) |
| 62 |
|
{ |
| 63 |
0 |
double tmp = distances.getValue(i, j) |
| 64 |
|
- (findr(i, j) + findr(j, i)); |
| 65 |
|
|
| 66 |
0 |
if (tmp < min) |
| 67 |
|
{ |
| 68 |
0 |
mini = i; |
| 69 |
0 |
minj = j; |
| 70 |
|
|
| 71 |
0 |
min = tmp; |
| 72 |
|
} |
| 73 |
|
} |
| 74 |
|
} |
| 75 |
|
} |
| 76 |
|
|
| 77 |
0 |
return min; |
| 78 |
|
} |
| 79 |
|
|
| 80 |
|
|
| 81 |
|
@inheritDoc |
| 82 |
|
|
| |
|
| 0% |
Uncovered Elements: 10 (10) |
Complexity: 3 |
Complexity Density: 0.5 |
|
| 83 |
0 |
@Override... |
| 84 |
|
protected void findNewDistances(BinaryNode nodei, BinaryNode nodej, |
| 85 |
|
double dist) |
| 86 |
|
{ |
| 87 |
0 |
nodei.dist = ((dist + ri) - rj) / 2; |
| 88 |
0 |
nodej.dist = (dist - nodei.dist); |
| 89 |
|
|
| 90 |
0 |
if (nodei.dist < 0) |
| 91 |
|
{ |
| 92 |
0 |
nodei.dist = 0; |
| 93 |
|
} |
| 94 |
|
|
| 95 |
0 |
if (nodej.dist < 0) |
| 96 |
|
{ |
| 97 |
0 |
nodej.dist = 0; |
| 98 |
|
} |
| 99 |
|
} |
| 100 |
|
|
| 101 |
|
|
| 102 |
|
|
| 103 |
|
|
| 104 |
|
|
| 105 |
|
|
| 106 |
|
|
| 107 |
|
@param |
| 108 |
|
@param |
| 109 |
|
|
| |
|
| 0% |
Uncovered Elements: 15 (15) |
Complexity: 5 |
Complexity Density: 0.56 |
|
| 110 |
0 |
@Override... |
| 111 |
|
protected void findClusterDistance(int i, int j) |
| 112 |
|
{ |
| 113 |
|
|
| 114 |
0 |
double[] newdist = new double[noseqs]; |
| 115 |
|
|
| 116 |
0 |
double ijDistance = distances.getValue(i, j); |
| 117 |
0 |
for (int l = 0; l < noseqs; l++) |
| 118 |
|
{ |
| 119 |
0 |
if ((l != i) && (l != j)) |
| 120 |
|
{ |
| 121 |
0 |
newdist[l] = (distances.getValue(i, l) + distances.getValue(j, l) |
| 122 |
|
- ijDistance) / 2; |
| 123 |
|
} |
| 124 |
|
else |
| 125 |
|
{ |
| 126 |
0 |
newdist[l] = 0; |
| 127 |
|
} |
| 128 |
|
} |
| 129 |
|
|
| 130 |
0 |
for (int ii = 0; ii < noseqs; ii++) |
| 131 |
|
{ |
| 132 |
0 |
distances.setValue(i, ii, newdist[ii]); |
| 133 |
0 |
distances.setValue(ii, i, newdist[ii]); |
| 134 |
|
} |
| 135 |
|
} |
| 136 |
|
} |