| 1 |
|
|
| 2 |
|
|
| 3 |
|
|
| 4 |
|
|
| 5 |
|
|
| 6 |
|
|
| 7 |
|
|
| 8 |
|
|
| 9 |
|
|
| 10 |
|
|
| 11 |
|
|
| 12 |
|
|
| 13 |
|
|
| 14 |
|
|
| 15 |
|
|
| 16 |
|
|
| 17 |
|
|
| 18 |
|
|
| 19 |
|
|
| 20 |
|
|
| 21 |
|
package jalview.analysis; |
| 22 |
|
|
| 23 |
|
import jalview.api.analysis.ScoreModelI; |
| 24 |
|
import jalview.api.analysis.SimilarityParamsI; |
| 25 |
|
import jalview.datamodel.BinaryNode; |
| 26 |
|
import jalview.viewmodel.AlignmentViewport; |
| 27 |
|
|
| 28 |
|
|
| 29 |
|
|
| 30 |
|
|
| 31 |
|
|
| |
|
| 0% |
Uncovered Elements: 54 (54) |
Complexity: 15 |
Complexity Density: 0.47 |
|
| 32 |
|
public class AverageDistanceTree extends TreeBuilder |
| 33 |
|
{ |
| 34 |
|
|
| 35 |
|
|
| 36 |
|
|
| 37 |
|
@param |
| 38 |
|
@param |
| 39 |
|
@param |
| 40 |
|
|
| |
|
| 0% |
Uncovered Elements: 1 (1) |
Complexity: 1 |
Complexity Density: 1 |
|
| 41 |
0 |
public AverageDistanceTree(AlignmentViewport av, ScoreModelI sm,... |
| 42 |
|
SimilarityParamsI scoreParameters) |
| 43 |
|
{ |
| 44 |
0 |
super(av, sm, scoreParameters); |
| 45 |
|
} |
| 46 |
|
|
| 47 |
|
|
| 48 |
|
|
| 49 |
|
|
| 50 |
|
|
| 51 |
|
|
| 52 |
|
|
| 53 |
|
@param |
| 54 |
|
@param |
| 55 |
|
|
| |
|
| 0% |
Uncovered Elements: 16 (16) |
Complexity: 5 |
Complexity Density: 0.5 |
|
| 56 |
0 |
@Override... |
| 57 |
|
protected void findClusterDistance(int i, int j) |
| 58 |
|
{ |
| 59 |
0 |
int noi = clusters.elementAt(i).cardinality(); |
| 60 |
0 |
int noj = clusters.elementAt(j).cardinality(); |
| 61 |
|
|
| 62 |
|
|
| 63 |
0 |
double[] newdist = new double[noseqs]; |
| 64 |
|
|
| 65 |
0 |
for (int l = 0; l < noseqs; l++) |
| 66 |
|
{ |
| 67 |
0 |
if ((l != i) && (l != j)) |
| 68 |
|
{ |
| 69 |
0 |
newdist[l] = ((distances.getValue(i, l) * noi) |
| 70 |
|
+ (distances.getValue(j, l) * noj)) / (noi + noj); |
| 71 |
|
} |
| 72 |
|
else |
| 73 |
|
{ |
| 74 |
0 |
newdist[l] = 0; |
| 75 |
|
} |
| 76 |
|
} |
| 77 |
|
|
| 78 |
0 |
for (int ii = 0; ii < noseqs; ii++) |
| 79 |
|
{ |
| 80 |
0 |
distances.setValue(i, ii, newdist[ii]); |
| 81 |
0 |
distances.setValue(ii, i, newdist[ii]); |
| 82 |
|
} |
| 83 |
|
} |
| 84 |
|
|
| 85 |
|
|
| 86 |
|
@inheritDoc |
| 87 |
|
|
| |
|
| 0% |
Uncovered Elements: 17 (17) |
Complexity: 6 |
Complexity Density: 0.67 |
|
| 88 |
0 |
@Override... |
| 89 |
|
protected double findMinDistance() |
| 90 |
|
{ |
| 91 |
0 |
double min = Double.MAX_VALUE; |
| 92 |
|
|
| 93 |
0 |
for (int i = 0; i < (noseqs - 1); i++) |
| 94 |
|
{ |
| 95 |
0 |
for (int j = i + 1; j < noseqs; j++) |
| 96 |
|
{ |
| 97 |
0 |
if (!done.get(i) && !done.get(j)) |
| 98 |
|
{ |
| 99 |
0 |
if (distances.getValue(i, j) < min) |
| 100 |
|
{ |
| 101 |
0 |
mini = i; |
| 102 |
0 |
minj = j; |
| 103 |
|
|
| 104 |
0 |
min = distances.getValue(i, j); |
| 105 |
|
} |
| 106 |
|
} |
| 107 |
|
} |
| 108 |
|
} |
| 109 |
0 |
return min; |
| 110 |
|
} |
| 111 |
|
|
| 112 |
|
|
| 113 |
|
@inheritDoc |
| 114 |
|
|
| |
|
| 0% |
Uncovered Elements: 16 (16) |
Complexity: 3 |
Complexity Density: 0.25 |
|
| 115 |
0 |
@Override... |
| 116 |
|
protected void findNewDistances(BinaryNode nodei, BinaryNode nodej, |
| 117 |
|
double dist) |
| 118 |
|
{ |
| 119 |
0 |
double ih = 0; |
| 120 |
0 |
double jh = 0; |
| 121 |
|
|
| 122 |
0 |
BinaryNode sni = nodei; |
| 123 |
0 |
BinaryNode snj = nodej; |
| 124 |
|
|
| 125 |
0 |
while (sni != null) |
| 126 |
|
{ |
| 127 |
0 |
ih = ih + sni.dist; |
| 128 |
0 |
sni = (BinaryNode) sni.left(); |
| 129 |
|
} |
| 130 |
|
|
| 131 |
0 |
while (snj != null) |
| 132 |
|
{ |
| 133 |
0 |
jh = jh + snj.dist; |
| 134 |
0 |
snj = (BinaryNode) snj.left(); |
| 135 |
|
} |
| 136 |
|
|
| 137 |
0 |
nodei.dist = ((dist / 2) - ih); |
| 138 |
0 |
nodej.dist = ((dist / 2) - jh); |
| 139 |
|
} |
| 140 |
|
|
| 141 |
|
} |