Clover icon

Coverage Report

  1. Project Clover database Mon Jan 6 2025 10:27:51 GMT
  2. Package jalview.viewmodel

File PCAModel.java

 

Coverage histogram

../../img/srcFileCovDistChart5.png
43% of files have more coverage

Code metrics

18
61
19
1
271
164
29
0.48
3.21
19
1.53

Classes

Class Line # Actions
PCAModel 35 61 29
0.448979644.9%
 

Contributing tests

This file is covered by 1 test. .

Source view

1    /*
2    * Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$)
3    * Copyright (C) $$Year-Rel$$ The Jalview Authors
4    *
5    * This file is part of Jalview.
6    *
7    * Jalview is free software: you can redistribute it and/or
8    * modify it under the terms of the GNU General Public License
9    * as published by the Free Software Foundation, either version 3
10    * of the License, or (at your option) any later version.
11    *
12    * Jalview is distributed in the hope that it will be useful, but
13    * WITHOUT ANY WARRANTY; without even the implied warranty
14    * of MERCHANTABILITY or FITNESS FOR A PARTICULAR
15    * PURPOSE. See the GNU General Public License for more details.
16    *
17    * You should have received a copy of the GNU General Public License
18    * along with Jalview. If not, see <http://www.gnu.org/licenses/>.
19    * The Jalview Authors are detailed in the 'AUTHORS' file.
20    */
21    package jalview.viewmodel;
22   
23    import jalview.analysis.PCA;
24    import jalview.api.RotatableCanvasI;
25    import jalview.api.analysis.ScoreModelI;
26    import jalview.api.analysis.SimilarityParamsI;
27    import jalview.datamodel.AlignmentView;
28    import jalview.datamodel.Point;
29    import jalview.datamodel.SequenceI;
30    import jalview.datamodel.SequencePoint;
31   
32    import java.util.List;
33    import java.util.Vector;
34   
 
35    public class PCAModel
36    {
37    /*
38    * inputs
39    */
40    private AlignmentView inputData;
41   
42    private final SequenceI[] seqs;
43   
44    private final SimilarityParamsI similarityParams;
45   
46    /*
47    * options - score model, nucleotide / protein
48    */
49    private ScoreModelI scoreModel;
50   
51    private boolean nucleotide = false;
52   
53    /*
54    * outputs
55    */
56    private PCA pca;
57   
58    int top;
59   
60    private List<SequencePoint> points;
61   
62    /**
63    * Constructor given sequence data, score model and score calculation
64    * parameter options.
65    *
66    * @param seqData
67    * @param sqs
68    * @param nuc
69    * @param modelName
70    * @param params
71    */
 
72  2 toggle public PCAModel(AlignmentView seqData, SequenceI[] sqs, boolean nuc,
73    ScoreModelI modelName, SimilarityParamsI params)
74    {
75  2 inputData = seqData;
76  2 seqs = sqs;
77  2 nucleotide = nuc;
78  2 scoreModel = modelName;
79  2 similarityParams = params;
80    }
81   
82    /**
83    * Performs the PCA calculation (in the same thread) and extracts result data
84    * needed for visualisation by PCAPanel
85    */
 
86  1 toggle public void calculate()
87    {
88  1 pca = new PCA(inputData, scoreModel, similarityParams);
89  1 pca.run(); // executes in same thread, wait for completion
90   
91    // Now find the component coordinates
92  1 int ii = 0;
93   
94  16 while ((ii < seqs.length) && (seqs[ii] != null))
95    {
96  15 ii++;
97    }
98   
99  1 int height = pca.getHeight();
100    // top = pca.getM().height() - 1;
101  1 top = height - 1;
102   
103  1 points = new Vector<>();
104  1 Point[] scores = pca.getComponents(top - 1, top - 2, top - 3, 1);
105   
106  16 for (int i = 0; i < height; i++)
107    {
108  15 SequencePoint sp = new SequencePoint(seqs[i], scores[i]);
109  15 points.add(sp);
110    }
111    }
112   
 
113  1 toggle public void updateRc(RotatableCanvasI rc)
114    {
115  1 rc.setPoints(points, pca.getHeight());
116    }
117   
 
118  0 toggle public boolean isNucleotide()
119    {
120  0 return nucleotide;
121    }
122   
 
123  0 toggle public void setNucleotide(boolean nucleotide)
124    {
125  0 this.nucleotide = nucleotide;
126    }
127   
128    /**
129    * Answers the index of the principal dimension of the PCA
130    *
131    * @return
132    */
 
133  1 toggle public int getTop()
134    {
135  1 return top;
136    }
137   
 
138  1 toggle public void setTop(int t)
139    {
140  1 top = t;
141    }
142   
143    /**
144    * Updates the 3D coordinates for the list of points to the given dimensions.
145    * Principal dimension is getTop(). Next greatest eigenvector is getTop()-1.
146    * Note - pca.getComponents starts counting the spectrum from rank-2 to zero,
147    * rather than rank-1, so getComponents(dimN ...) == updateRcView(dimN+1 ..)
148    *
149    * @param dim1
150    * @param dim2
151    * @param dim3
152    */
 
153  0 toggle public void updateRcView(int dim1, int dim2, int dim3)
154    {
155    // note: actual indices for components are dim1-1, etc (patch for JAL-1123)
156  0 Point[] scores = pca.getComponents(dim1 - 1, dim2 - 1, dim3 - 1, 1);
157   
158  0 for (int i = 0; i < pca.getHeight(); i++)
159    {
160  0 points.get(i).coord = scores[i];
161    }
162    }
163   
 
164  0 toggle public String getDetails()
165    {
166  0 return pca.getDetails();
167    }
168   
 
169  0 toggle public AlignmentView getInputData()
170    {
171  0 return inputData;
172    }
173   
 
174  1 toggle public void setInputData(AlignmentView data)
175    {
176  1 inputData = data;
177    }
178   
 
179  0 toggle public String getPointsasCsv(boolean transformed, int xdim, int ydim,
180    int zdim)
181    {
182  0 StringBuffer csv = new StringBuffer();
183  0 csv.append("\"Sequence\"");
184  0 if (transformed)
185    {
186  0 csv.append(",");
187  0 csv.append(xdim);
188  0 csv.append(",");
189  0 csv.append(ydim);
190  0 csv.append(",");
191  0 csv.append(zdim);
192    }
193    else
194    {
195  0 for (int d = 1, dmax = pca.component(1).length; d <= dmax; d++)
196    {
197  0 csv.append("," + d);
198    }
199    }
200  0 csv.append("\n");
201  0 for (int s = 0; s < seqs.length; s++)
202    {
203  0 csv.append("\"" + seqs[s].getName() + "\"");
204  0 double fl[];
205  0 if (!transformed)
206    {
207    // output pca in correct order
208  0 fl = pca.component(s);
209  0 for (int d = fl.length - 1; d >= 0; d--)
210    {
211  0 csv.append(",");
212  0 csv.append(fl[d]);
213    }
214    }
215    else
216    {
217  0 Point p = points.get(s).coord;
218  0 csv.append(",").append(p.x);
219  0 csv.append(",").append(p.y);
220  0 csv.append(",").append(p.z);
221    }
222  0 csv.append("\n");
223    }
224  0 return csv.toString();
225    }
226   
 
227  3 toggle public String getScoreModelName()
228    {
229  3 return scoreModel == null ? "" : scoreModel.getName();
230    }
231   
 
232  0 toggle public void setScoreModel(ScoreModelI sm)
233    {
234  0 this.scoreModel = sm;
235    }
236   
237    /**
238    * Answers the parameters configured for pairwise similarity calculations
239    *
240    * @return
241    */
 
242  1 toggle public SimilarityParamsI getSimilarityParameters()
243    {
244  1 return similarityParams;
245    }
246   
 
247  1 toggle public List<SequencePoint> getSequencePoints()
248    {
249  1 return points;
250    }
251   
 
252  1 toggle public void setSequencePoints(List<SequencePoint> sp)
253    {
254  1 points = sp;
255    }
256   
257    /**
258    * Answers the object holding the values of the computed PCA
259    *
260    * @return
261    */
 
262  1 toggle public PCA getPcaData()
263    {
264  1 return pca;
265    }
266   
 
267  1 toggle public void setPCA(PCA data)
268    {
269  1 pca = data;
270    }
271    }