Clover icon

Coverage Report

  1. Project Clover database Wed Nov 13 2024 18:27:33 GMT
  2. Package jalview.math

File MiscMath.java

 

Coverage histogram

../../img/srcFileCovDistChart1.png
56% of files have more coverage

Code metrics

58
102
19
1
438
239
50
0.49
5.37
19
2.63

Classes

Class Line # Actions
MiscMath 33 102 50
0.067039116.7%
 

Contributing tests

This file is covered by 2 tests. .

Source view

1    /*
2    * Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$)
3    * Copyright (C) $$Year-Rel$$ The Jalview Authors
4    *
5    * This file is part of Jalview.
6    *
7    * Jalview is free software: you can redistribute it and/or
8    * modify it under the terms of the GNU General Public License
9    * as published by the Free Software Foundation, either version 3
10    * of the License, or (at your option) any later version.
11    *
12    * Jalview is distributed in the hope that it will be useful, but
13    * WITHOUT ANY WARRANTY; without even the implied warranty
14    * of MERCHANTABILITY or FITNESS FOR A PARTICULAR
15    * PURPOSE. See the GNU General Public License for more details.
16    *
17    * You should have received a copy of the GNU General Public License
18    * along with Jalview. If not, see <http://www.gnu.org/licenses/>.
19    * The Jalview Authors are detailed in the 'AUTHORS' file.
20    */
21    package jalview.math;
22   
23    import jalview.util.Format;
24   
25    import java.lang.Math;
26    import java.util.Arrays;
27   
28    /**
29    * A collection of miscellaneous mathematical operations
30    *
31    * @AUTHOR MorellThomas
32    */
 
33    public class MiscMath
34    {
35    /**
36    * prints an array
37    *
38    * @param m
39    * ~ array
40    */
 
41  0 toggle public static void print(double[] m, String format)
42    {
43  0 System.out.print("[ ");
44  0 for (double a : m)
45    {
46  0 Format.print(System.out, format + " ", a);
47    }
48  0 System.out.println("]");
49    }
50   
51    /**
52    * calculates the mean of an array
53    *
54    * @param m
55    * ~ array
56    * @return
57    */
 
58  0 toggle public static double mean(double[] m)
59    {
60  0 double sum = 0;
61  0 int nanCount = 0;
62  0 for (int i = 0; i < m.length; i++)
63    {
64  0 if (!Double.isNaN(m[i])) // ignore NaN values in the array
65    {
66  0 sum += m[i];
67    }
68    else
69    {
70  0 nanCount++;
71    }
72    }
73  0 return sum / (double) (m.length - nanCount);
74    }
75   
76    /**
77    * calculates the sum of an array
78    *
79    * @param m
80    * ~ array
81    * @return
82    */
 
83  0 toggle public static double sum(double[] m)
84    {
85  0 double sum = 0;
86  0 for (int i = 0; i < m.length; i++)
87    {
88  0 if (!Double.isNaN(m[i])) // ignore NaN values in the array
89    {
90  0 sum += m[i];
91    }
92    }
93  0 return sum;
94    }
95   
96    /**
97    * calculates the square root of each element in an array
98    *
99    * @param m
100    * ~ array
101    *
102    * @return TODO make general with function passed -> apply function to each
103    * element
104    */
 
105  0 toggle public static double[] sqrt(double[] m)
106    {
107  0 double[] sqrts = new double[m.length];
108  0 for (int i = 0; i < m.length; i++)
109    {
110  0 sqrts[i] = Math.sqrt(m[i]);
111    }
112  0 return sqrts;
113    }
114   
115    /**
116    * calculate element wise multiplication of two arrays with the same length
117    *
118    * @param a
119    * ~ array
120    * @param b
121    * ~ array
122    *
123    * @return
124    */
 
125  0 toggle public static double[] elementwiseMultiply(byte[] a, double[] b)
126    throws RuntimeException
127    {
128  0 if (a.length != b.length) // throw exception if the arrays do not have the
129    // same length
130    {
131  0 throw new SameLengthException(a.length, b.length);
132    }
133  0 double[] result = new double[a.length];
134  0 for (int i = 0; i < a.length; i++)
135    {
136  0 result[i] = a[i] * b[i];
137    }
138  0 return result;
139    }
140   
 
141  0 toggle public static double[] elementwiseMultiply(double[] a, double[] b)
142    throws RuntimeException
143    {
144  0 if (a.length != b.length) // throw exception if the arrays do not have the
145    // same length
146    {
147  0 throw new SameLengthException(a.length, b.length);
148    }
149  0 double[] result = new double[a.length];
150  0 for (int i = 0; i < a.length; i++)
151    {
152  0 result[i] = a[i] * b[i];
153    }
154  0 return result;
155    }
156   
 
157  0 toggle public static byte[] elementwiseMultiply(byte[] a, byte[] b)
158    throws RuntimeException
159    {
160  0 if (a.length != b.length) // throw exception if the arrays do not have the
161    // same length
162    {
163  0 throw new SameLengthException(a.length, b.length);
164    }
165  0 byte[] result = new byte[a.length];
166  0 for (int i = 0; i < a.length; i++)
167    {
168  0 result[i] = (byte) (a[i] * b[i]);
169    }
170  0 return result;
171    }
172   
 
173  0 toggle public static double[] elementwiseMultiply(double[] a, double b)
174    {
175  0 double[] result = new double[a.length];
176  0 for (int i = 0; i < a.length; i++)
177    {
178  0 result[i] = a[i] * b;
179    }
180  0 return result;
181    }
182   
183    /**
184    * calculate element wise division of two arrays ~ a / b
185    *
186    * @param a
187    * ~ array
188    * @param b
189    * ~ array
190    *
191    * @return
192    */
 
193  0 toggle public static double[] elementwiseDivide(double[] a, double[] b)
194    throws RuntimeException
195    {
196  0 if (a.length != b.length) // throw exception if the arrays do not have the
197    // same length
198    {
199  0 throw new SameLengthException(a.length, b.length);
200    }
201  0 double[] result = new double[a.length];
202  0 for (int i = 0; i < a.length; i++)
203    {
204  0 result[i] = a[i] / b[i];
205    }
206  0 return result;
207    }
208   
209    /**
210    * calculate element wise addition of two arrays
211    *
212    * @param a
213    * ~ array
214    * @param b
215    * ~ array
216    *
217    * @return
218    */
 
219  0 toggle public static double[] elementwiseAdd(double[] a, double[] b)
220    throws RuntimeException
221    {
222  0 if (a.length != b.length) // throw exception if the arrays do not have the
223    // same length
224    {
225  0 throw new SameLengthException(a.length, b.length);
226    }
227  0 double[] result = new double[a.length];
228   
229  0 for (int i = 0; i < a.length; i++)
230    {
231  0 result[i] += a[i] + b[i];
232    }
233  0 return result;
234    }
235   
 
236  0 toggle public static double[] elementwiseAdd(double[] a, double b)
237    {
238  0 double[] result = new double[a.length];
239  0 for (int i = 0; i < a.length; i++)
240    {
241  0 result[i] = a[i] + b;
242    }
243  0 return result;
244    }
245   
246    /**
247    * returns true if two arrays are element wise within a tolerance
248    *
249    * @param a
250    * ~ array
251    * @param b
252    * ~ array
253    * @param rtol
254    * ~ relative tolerance
255    * @param atol
256    * ~ absolute tolerance
257    * @param equalNAN
258    * ~ whether NaN at the same position return true
259    *
260    * @return
261    */
 
262  0 toggle public static boolean allClose(double[] a, double[] b, double rtol,
263    double atol, boolean equalNAN)
264    {
265  0 boolean areEqual = true;
266  0 for (int i = 0; i < a.length; i++)
267    {
268  0 if (equalNAN && (Double.isNaN(a[i]) && Double.isNaN(b[i]))) // if equalNAN
269    // == true ->
270    // skip the
271    // NaN pair
272    {
273  0 continue;
274    }
275  0 if (Math.abs(a[i] - b[i]) > (atol + rtol * Math.abs(b[i]))) // check for
276    // the
277    // similarity
278    // condition
279    // -> if not
280    // met ->
281    // break and
282    // return
283    // false
284    {
285  0 areEqual = false;
286  0 break;
287    }
288    }
289  0 return areEqual;
290    }
291   
292    /**
293    * returns the index of the maximum and the maximum value of an array
294    *
295    * @param a
296    * ~ array
297    *
298    * @return
299    */
 
300  2 toggle public static int[] findMax(int[] a)
301    {
302  2 int max = 0;
303  2 int maxIndex = 0;
304  6 for (int i = 0; i < a.length; i++)
305    {
306  4 if (a[i] > max)
307    {
308  2 max = a[i];
309  2 maxIndex = i;
310    }
311    }
312  2 return new int[] { maxIndex, max };
313    }
314   
315    /**
316    * returns the dot product of two arrays
317    *
318    * @param a
319    * ~ array a
320    * @param b
321    * ~ array b
322    *
323    * @return
324    */
 
325  0 toggle public static double dot(double[] a, double[] b)
326    {
327  0 if (a.length != b.length)
328    {
329  0 throw new IllegalArgumentException(
330    String.format("Vectors do not have the same length (%d, %d)!",
331    a.length, b.length));
332    }
333   
334  0 double aibi = 0;
335  0 for (int i = 0; i < a.length; i++)
336    {
337  0 aibi += a[i] * b[i];
338    }
339  0 return aibi;
340    }
341   
342    /**
343    * returns the euklidian norm of the vector
344    *
345    * @param v
346    * ~ vector
347    *
348    * @return
349    */
 
350  0 toggle public static double norm(double[] v)
351    {
352  0 double result = 0;
353  0 for (double i : v)
354    {
355  0 result += Math.pow(i, 2);
356    }
357  0 return Math.sqrt(result);
358    }
359   
360    /**
361    * returns the number of NaN in the vector
362    *
363    * @param v
364    * ~ vector
365    *
366    * @return
367    */
 
368  0 toggle public static int countNaN(double[] v)
369    {
370  0 int cnt = 0;
371  0 for (double i : v)
372    {
373  0 if (Double.isNaN(i))
374    {
375  0 cnt++;
376    }
377    }
378  0 return cnt;
379    }
380   
381    /**
382    * recursively calculates the permutations of total n items with r items per
383    * combination according to n!/(n-r)! by only multiplying the relevant terms
384    *
385    * @param n
386    * @param r
387    *
388    * @return permutations
389    */
 
390  0 toggle public static long permutations(int n, int r)
391    {
392  0 if (n < r)
393  0 return permutations(r, n);
394   
395  0 long result = 1l;
396  0 for (int i = 0; i < r; i++)
397    {
398  0 result *= (n - i);
399    }
400  0 return result;
401    }
402   
403    /**
404    * calculate all unique combinations of n elements into r sized groups
405    *
406    * @param n
407    * @param r
408    *
409    * @return
410    */
 
411  0 toggle public static int combinations(int n, int r)
412    {
413  0 int result = 1;
414  0 for (int i = 0; i < r; i++)
415    {
416  0 result *= (n - 1);
417    }
418  0 return (int) (result / MiscMath.factorial(r));
419    }
420   
421    /**
422    * calculate the factorial of n (n >= 0)
423    *
424    * @param n
425    *
426    * @return
427    */
 
428  0 toggle public static int factorial(int n)
429    {
430  0 int result = 1;
431  0 for (int i = 0; i < n; i++)
432    {
433  0 result *= (n - i);
434    }
435  0 return result;
436    }
437   
438    }